Friday worksheet 4 – Latent heat

- 1. The latent heat of vaporisation of acetone (molar mass 58.1g/mol) is 31.3 kJ/mol. Calculate the amount of energy, in kJ, required to evaporate 21.4 g of acetone at boiling point.
- 2. Refer to the information included in the table below.
 - a. Exactly 1 kg of ethanol is heated to its boiling temperature. Calculate the amount of energy, in kJ, that is required to vapourise the entire sample of ethanol?

Substance	ΔH_{c} (kl/mol)	ΔH (k.l/mol)
oussiance		Lilvap (Kormon)
Ammonia (NH ₃)	5.65	23.4
Ethanol (C ₂ H ₅ OH)	4.60	43.5
Methanol (CH ₃ OH)	3.16	35.3
Oxygen (O ₂)	0.44	6.82
Water (H ₂ O)	6.01	40.7
mater (120)	0.01	40.7

- b. How much energy is required, in kJ, to convert 23.4 kg of ammonia from a liquid to a gas at the same temperature?
- c. How much energy, in joules, is released when 10.0 g of steam at 100 $^\circ C$ condenses to water at 100 $^\circ C?$
- d. A furnace delivers an accurate amount of energy every minute. If it takes 30 seconds to convert 1.50 X 10³ g of liquid water to 1.50 X 10³ g of water vapour, how long would the same furnace take to convert 100 g of liquid aluminium at the boiling point of 2,470 °C to 100 g of aluminium gas also at 2,470 °C? Explain your reasoning with the use of a calculation.

(latent heat of vaporisation of aluminium 284kJ/mol)